Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 169(4): 74, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480558

RESUMO

Triple motif protein 21 (TRIM21) has an antiviral function that inhibits various viral infections. However, its role in the progress of influenza A virus (IAV) infection is unclear. In this study, we investigated the role and molecular mechanism of TRIM21 in IAV infection. RT-qPCR was used to determine the level of TRIM21 mRNA, and ELISA was used to measure the levels of IFN-α, IFN-ß, IL-6, and TNF-α. The levels of the TRIM21, NP, TBK1, IRF3, p-TBK1, and p-IRF3 proteins were estimated by Western blot. The results showed that, after IAV infection, TRIM21 was upregulated in clinical patient serum and A549 cells, and this was correlated with the IFN response. Overexpression of TRIM21 reduced IAV replication and transcription in in vitro cell experiments. TRIM21 also increased IFN-α and IFN-ß levels and decreased IL-6 and TNF-α levels in A549 cells. In addition, overexpression of TRIM21 inhibited IAV-induced apoptosis. Further experiments demonstrated that TBK1-IRF3 signaling was activated by TRIM21 and was involved in the inhibitory effect of TRIM21 on virus replication. In summary, our study suggests that TRIM21 inhibits viral replication by activating the TBK1-IRF3 signaling pathway, further inhibiting the infection process of IAV.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Células A549 , Inflamação , Vírus da Influenza A/metabolismo , Vírus da Influenza A Subtipo H1N1/metabolismo , Influenza Humana/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon-alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
3.
Environ Toxicol ; 36(11): 2225-2235, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34323359

RESUMO

Angiomotin-like 2 (AMOTL2) is a key modulator of signaling transduction and participates in the regulation of various cellular progresses under diverse physiological and pathological conditions. However, whether AMOTL2 participates in asthma pathogenesis has not been fully studied. In the present work, we studied the possible role and mechanism of AMOTL2 in regulating transforming growth factor-ß1 (TGF-ß1)-induced proliferation and extracellular matrix (ECM) deposition of airway smooth muscle (ASM) cells. Our results showed marked reductions in the abundance of AMOTL2 in TGF-ß1-stimulated ASM cells. Cellular functional investigations confirmed that the up-regulation of AMOTL2 dramatically decreased the proliferation and ECM deposition induced by TGF-ß1 in ASM cells. In contrast, the depletion of AMOTL2 exacerbated TGF-ß1-induced ASM cell proliferation and ECM deposition. Further research revealed that the overexpression of AMOTL2 restrained the activation of Yes-associated protein 1 (YAP1) in TGF-ß1-stimulated ASM cells. Moreover, the reactivation of YAP1 markedly reversed AMOTL2-mediated suppression of TGF-ß1-induced ASM cell proliferation and ECM deposition. Together, these findings suggest that AMOTL2 restrains TGF-ß1-induced proliferation and ECM deposition of ASM cells by down-regulating YAP1 activation.


Assuntos
Proteínas de Transporte/genética , Matriz Extracelular , Miócitos de Músculo Liso , Fator de Crescimento Transformador beta1 , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Camundongos , Miócitos de Músculo Liso/citologia , Fator de Crescimento Transformador beta1/farmacologia , Proteínas de Sinalização YAP
4.
Biomed Pharmacother ; 121: 109578, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31715371

RESUMO

Chemotherapy and radiotherapy are not as successful in the case of renal cell carcinoma (RCC) although some targeted drugs were approved for RCC therapy recently. Analysis of whole genomic data will lead to improvements in understanding RCC and identifying novel anticancer targets. Here, we found the differential mRNA expression and copy number variation (CNV) of Carbonic anhydrase-related protein VIII (CA8) gene in RCC through integrated bioinformatics analysis of TCGA database, which was confirmed in 5 cases of samples collected from RCC patients who underwent radical nephrectomy by analysis of CA8 mRNA and protein levels using RT-PCR immunohistochemical assay. However, we got a completely opposite result that CA8 promoted RCC progression, those are CA8 overexpression promoted the proliferative and migratory ability of Caki-1 and 769-P cells in vitro as determined with MTT and transwell assay, and CA8 overexpression could also promote Caki-1 xenograft growth in BALB/C­nu/nu mice. On the contrary, CA8-knockdown reduced Caki-1 and 769-P cell proliferation and migration. Moreover, knockdown of CA8 decreased pAKT and MMP2 protein levels in Caki-1 cells while overexpressing CA8 increased pAKT and MMP2. In conclusion, we showed that CA8 promoted RCC cell proliferation and migration, but it was down-regulated in RCC, which requires an additional mechanism study.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Proliferação de Células/genética , Neoplasias Renais/patologia , Animais , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Renais/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Mensageiro/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Biomed Pharmacother ; 104: 781-787, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29843083

RESUMO

Accumulating evidence shows that sirtuin 7 (SIRT7), a key mediator of many cellular activities, plays an important role in the pathogenesis of various diseases; however, little is known about the role of SIRT7 in asthma, which is characterized by airway remodeling. This study investigated the potential role of SIRT7 in regulating the proliferation and migration of airway smooth muscle (ASM) cells, which are critical events during airway remodeling in asthmatic conditions. The results demonstrated that SIRT7 expression was significantly upregulated in ASM cells treated with transforming growth factor-beta 1 (TGF-ß1). Knockdown of SIRT7 inhibited the proliferation, promoted the apoptosis, and suppressed the migration of TGF-ß1-treated ASM cells, while overexpression of SIRT7 had the opposite effect. Moreover, knockdown of SIRT7 inhibited protein expression of the TGF-ß receptor I (TßRI), whilst overexpression of SIRT7 promoted the expression of TßRI. Importantly, knockdown of TßRI partially reversed the stimulatory effect of SIRT7 overexpression on the TGF-ß1-induced proliferation and migration of ASM cells. Taken together, these results demonstrate that SIRT7 is involved in regulating TGF-ß1-induced ASM cell proliferation and migration by regulating the expression of TßRI, thus indicating an important role of SIRT7 during airway remodeling in asthma.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Miócitos de Músculo Liso/metabolismo , Sirtuínas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Apoptose/fisiologia , Asma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...